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The Big Picture



The Big Picture

We’ve spent much of this quarter learning to deal with divergences,

typically those of an ultraviolet nature. These divergences led to shifting

in mass parameters and coupling constants through the process of

renormalization, but were otherwise rather innocuous.

Renormalization gave us a great deal of freedom in that we were free to

define our theory at any arbitrary momentum scale. But in order to

describe the the correct physical theory, the renormalized Green’s

functions must be identical to the bare Green functions, up to the field

strength renormalization.

G
(n)
R (µ; x1, ..., xn) = Z−n/2G

(n)
b (x1, ..., xn)
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The Big Picture

We then asked, how would our Green’s functions change if we looked at a

different renormalization scale? This led to the Callen-Symanzik

(renormalization group) equations. Solving these, we calculated how

coupling constants and fields evolve with momentum scale.

Until now, we’ve utilized correlation functions to perform this analysis.

But we will see that it is particularly useful to study the renormalization

flow at the level of the operators themselves. But to do so, we will need

to deal with the non-locality of operator products. This is where we will

meet the Operator Product Expansion (OPE).
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The Big Picture

After motivating the OPE, we will see that all of the interesting behavior

at high energy (short distances) depends only on Wilson coefficents.

These can be calculated once and then used for any process since they

do not depend on any external fields that appear in a Green’s function.

We will then use the OPE to look at QCD renormalization of the weak

interactions. Since QCD has asymptotic freedom, we will see that the

OPE allows us to determine the renormalization corrections in terms of

the anomalous dimensions of the operators.
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Renormalization Group

Refresher/Setup



RG

The bare and renormalized Green’s functions are related by

G
(n)
R (µ; x1, ..., xn) = Z−n/2G

(n)
b (x1, ..., xn) (1)

When varying the renormalization scale µ, we must also change Z and

the coupling constants (here we’ll use λ) in order for these Green’s

functions to represent the same physical theory. This can be written

generally as

dG
(n)
R

dµ
=
∂G

(n)
R

∂µ
+
∂G

(n)
R

∂λ

∂λ

∂µ
(2)
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RG

By taking the derivative of the left hand side of (1) with respect to µ,

and using the fact that the bare Green’s function does not depend on the

renormalization scale, we find

dG
(n)
R

dµ
= − n

2Z

∂Z

∂µ
G

(n)
R . (3)

Combining these results, we end up with the renormalization group

equation

[
µ
∂

∂µ
+ β

∂

∂λ
+ nγ

]
G

(n)
R = 0, (4)

where β ≡ µ∂λ∂µ and γ ≡ µ
2Z

∂Z
∂µ control how the coupling constant and

field φ vary with µ respectively.
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RG

Correlation functions containing composite operators (operators evaluated

at the same spacetime point) must also be renormalized. Ob = ZOOR .

Thus, we may write the relationship between the bare and renormalized

Green’s functions as

G
(n;1)
R (µ; x1, ..., xn; y) = Z−n/2Z−1

O G
(n;1)
b (x1, ..., xn; y), (5)

where

G
(n;1)
R (µ; x1, ..., xn; y) = 〈φ(x1)...φ(xn)O(y)〉. (6)
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RG

By the same treatment as before, requiring the bare correlation function

to be independent of the renormalization scale µ, we end up with the

following equation

[
µ
∂

∂µ
+ β

∂

∂λ
+ nγ + γO

]
G

(n;1)
R = 0, (7)

where the anomalous dimension of the composite operator is defined as

γO ≡
µ

ZO

∂ZO
∂µ

(8)
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RG

It would be nice to study the renormalization flow at the level of the

operators. But the behavior of composite operators is unwieldy

(A1(x1)A2(x2)...An(xn) is singular when the arguments coincide

(x1 = x2... = xn)). For example, consider the humble free-field propagator

〈0|Tφ(x)φ(y)|〉 = DF (x − y) =

∫
d4p

(2π)4

i

p2 −m2 + iε
e−ip·(x−y). (9)

In the limit of x → y (forming a composite operator), this is divergent!

To make our lives easier, we use the OPE to stick all the difficult

behavior inside the Wilson coefficients.
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Introducing the Operator

Product Expansion



OPE

Let’s say we’re looking at a process that involves two operators, O1 and

O2, which act on points separated by a small distance x . Let’s also

imagine that there are external physical states located much further away

φ(yi ). The amplitude for this process can be calculated from the Green’s

function (where I’m writing all products of operators as time ordered)

G12(x ; , y1...ym) = 〈O1(x)O2(0)φ(y1)...φ(ym)〉. (10)
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OPE

In a correlation function like 〈O1(x)O2(0)φ(y1)...φ(ym)〉, since the local

operators φ(yi ) are far away from 0, x , in the limit of x → 0, the operator

product looks like a single local operator. It can, in fact, produce the

most general local disturbance. Thus, we can expand it in terms of the

basis which contains all possible local operators at 0.
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OPE

The operator product expansion (OPE) states that the product of local

operators evaluated at different points, in the limit that those points

approach each other, can be written as a sum over composite (local)

operators:

lim
x→0
O1(x)O2(0) =

∑
n

Cn(x)On(0). (11)

This is useful because it holds at the level of operators; the OPE is

independent of external states. In other words, regardless of any fields

that might appear in a Green’s function, once you have calculated a OPE

once, you may then use it to calculate matrix elements for any process.
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Callen-Symanzik Equation for

Wilson Coefficients



Wilson Coefficients

Using the OPE, our Green’s function can be expanded as

G12(x ; y1, ...ym) =
∑
n

C n
12(x)Gn(y1, ...ym), (12)

where

Gn(y1, ...ym) = 〈On(0)φ(y1)...φ(ym)〉. (13)

Notice that, indeed, all of the dependence on x is in the Wilson

coefficients (the C (x)’s). But these, in turn, only depend on the

operators themselves since

lim
x→0
O1(x)O2(0) =

∑
n

Cn(x)On(0). (14)
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Wilson Coefficients

We expect the Wilson coefficients to depend on the renormalization

scale. So to determine this dependence, we write the RG equation for the

renormalized Green’s function

[
µ
∂

∂µ
+ β

∂

∂λ
+ nγ + γ1 + γ2

]
G

(n)
12 = 0. (15)

The RG equation for the Green functions Gn that show up on the right

side of (12) give us

[
µ
∂

∂µ
+ β

∂

∂λ
+ nγ + γn

]
Gn = 0, (16)

where γn is the anomalous dimension of the operator On.
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Wilson Coefficients

In order to satisfy

G12(x ; y1, ...ym) =
∑
n

C n
12(x)Gn(y1, ...ym),

the Wilson coefficients must obey the equation

[
µ
∂

∂µ
+ β

∂

∂λ
+ γ1 + γ2 − γn

]
C

(n)
12 = 0. (17)

This shows that our previous assumption of the dependence of the

coefficients on µ to be valid. Most importantly, this shows that the

Wilson coefficients only depend on the anomalous dimensions of the

operators, but not on the specific correlation function! Thus the number

of fields φ and their anomalous dimension does not come into play.
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x-dependence of Wilson Coefficients

Let’s say the dimensions of the operators O1,O2, and On are d1, d2, and

dn respectively. Then we may write the Wilson coefficients as

C
(n)
12 (x ;µ) =

1

|x |d1+d2−dn
C̃ n

12(µ|x |), (18)

where C̃ n
12 is dimensionless. To find the structure of the coefficient, we

introduce the running coupling λ(1/|x |), defined by

dλ(p, λ)

d ln(p/µ)
= β(λ), λ(µ, λ) = λ

which lets us write the solution as

C
(n)
12 (x ;µ) =

C(n)
12

(
(λ(1/|x |))

)
|x |d1+d2−dn

× exp
[ ∫ µ

1/|x|

dp′

p′
[γn(λ(p′))− γO1 (λ(p′))− γO2 (λ(p′))]

] (19)

where C(n)
12 is a perturbative function of the running coupling.
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x-dependence of Wilson Coefficients

C
(n)
12 (x ;µ) =

C(n)
12

(
(λ(1/|x |))

)
|x |d1+d2−dn

× exp
[ ∫ µ

1/|x|

dp′

p′
[γn(λ(p′))− γO1 (λ(p′))− γO2 (λ(p′))]

]
We see that the short distance behavior is singular if dn < d1 + d2. On

the other hand, if dn > d1 + d2, the contribution goes to zero so we do

not need to consider operators of this kind in the OPE.

In class, we saw that QCD was asymptotically free. That is, the coupling

goes to zero at short distances. Let’s examine the Wilson coefficients

further in this case.
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QCD Wilson Coefficients

To first order, any anomalous dimension can be written as

γO ≡ −aO g2

(4π)2 for some numerical constant aO. Thus we have

γd − γ1 − γ2 = (a1 + a2 − an)
αs

(4π)
. (20)

At one loop, the running coupling αs is simply

αs(Q2) =
4π

β0 ln( Q2

Λ2
QCD

)
(21)

where β0 is the coefficient of the first term in the Taylor expansion of the

QCD β function and Q is the momentum scale of the given process.
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QCD Wilson Coefficients

This leads us to

C
(n)
12 (x ;µ) =

C(n)
12

(
g(1/|x |)

)
|x |d1+d2−dn

[ ln(1/|x |2Λ2
QCD)

ln(µ2/Λ2
QCD)

] an−a1−a2
2β0

. (22)

In particular, note that when dn = d1 + d2, the main source of the |x |
dependence is the powers of the logarithmic terms.
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Operator Mixing

It is possible for quantum corrections to mix operators under the evolution

of the renormalization scale. In that case, we must consider the more

general form of the Callen-Symanzik equation for the Wilson Coefficients

[
µ
∂

∂µ
+ β

∂

∂λ
+ γ1 + γ2

]
C j

12 −
∑
i

γijC
i
12 = 0, (23)

where γij is now a matrix.
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An example: QCD corrections to

weak decays



Overview - QCD corrections to weak decays

We will see that the matrix element for a QCD process mediated by an

operator O(x) will receive corrections which depend on the momentum

scale of the process and the renormalization scale. These corrections will

depend on the anomalous dimension of the operator which takes the form

γO = −aO
g2

(4π)2
. (24)

After solving the Callen-Symanzik equation, we will find the QCD

renormaliztion factor

( ln(µ2/Λ2)

ln(Q2/Λ2)

)aO/2b0

, (25)

where Q is the momentum scale of the process mediated by O, µ is the

renormalization scale used to define the operator normalization, and b0 is

the coefficient of the QCD β function b0 = 11− 2nf
3 .
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QCD corrections to weak decays

At low energy, the weak interaction between quarks and leptons in the

standard model can be described by Fermi’s 4-fermion theory. The

interaction term in the Lagrangian is

Lint ≈
4GF√

2
JµL (0)Jν†L (0) + h.c ., (26)

where JµL is the left handed charged current. In the full electroweak

theory, the product of currents would be non-local and the Lagrangian

would contain instead JµL (0)Dµν(0, x)Jν†L (x). Using the OPE we will

study how the non-local electroweak operators get replaced by local ones.
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The Trivial Cases - QCD corrections to weak decays

Since leptons do not couple directly to gluons at one loop, there will be

no QCD corrections to purely leptonic weak interactions.

For a semi-leptonic weak interaction (involving both a leptonic current

and a quark current), again the leptons don’t receive corrections to first

order. Moreover, the quark current has an anomalous dimension of zero

so it is not affected by strong interactions.

The only non-trivial case is non-leptonic weak interactions, i.e. weak

interactions between quark currents. Let’s look at these now.
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Strange Decay - QCD corrections to weak decays

Let’s look at the weak decay of the strange quark. In the standard

model, the interactions between charged currents containing leptonic and

quark terms has the form

Lint =
g2

2
JµL Dµν(0, x)Jν†L (x) + h.c., (27)

where Dµν is the propagator of the W boson. At low momenta, we can

make the approximation

1

k2 −m2
W

→ −1

m2
W

, (28)

in which case, the weak interaction becomes an effective local vertex

(Fermi theory). We will find the consequences of the original composite

interaction by working with this local operator.
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Strange Decay - QCD corrections to weak decays

In Fermi theory, we have the coupling (dLγ
µuL)(uLγµsL). So let’s then

look at the OPE of the product of the currents

Aµ1 (x) ≡ dLγ
µuL, Aµ2 (0) = uLγµsL. (29)

These will be expanded on the operators

O1 ≡ (dLγ
µuL)(uLγµsL), O2 ≡ (dLγ

µsL)(uLγµuL). (30)

Note that d1 + d2 = dn, so the x dependence of the Wilson coefficients

comes entirely from the logarithms at one loop, as we saw previously.
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Strange Decay - QCD corrections to weak decays

To determine the Wilson coefficients C
(n)
12 for the operators On, we first

need to calculate the anomalous dimensions of all the involved operators.

Since A1 and A2 are conserved, their anomalous dimension is zero

γA1 = γA2 = 0! This is a consequence of the Ward identity and can be

verified easily. As we saw in class, a conserved currents imply that the

corresponding charges (Q =
∫
d3xj0) form a Lie algebra

[Qa,Qb] = f cabQC , (31)

which by dimensional analysis tells us that conserved currents never

acquire an anomalous dimension.
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Strange Decay - QCD corrections to weak decays

To get the anomalous dimension of the operators O1,O2, we need to

calculate all the order g2 corrections. For O1, these come from the

diagrams
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Strange Decay - QCD corrections to weak decays

The calculation of the previous diagrams is not particularly important.

See Gelis 7.3 for the details. The takeaway is that the operators mix,

causing the anomalous dimensions for the operators to form a

non-diagonal matrix

γij =
g2

(4π)2

(
−2 6

6 −2

)
(32)

Thus we must solve a coupled Callen-Symanzik equation[
µ
∂

∂µ
+ β

∂

∂λ

]
C j

12 −
∑
i

γijC
i
12 = 0, (33)

by rotating to a diagonal basis. This is satisfied for operators

O1/2 ≡
1

2
[O1 −O2], O3/2 =

1

2
[O1 +O2]. (34)
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Strange Decay - QCD corrections to weak decays

The eigenvalues of the matrix γij are

γ1/2 = −8
g2

(4π)2
, γ3/2 = 4

g2

(4π)2
. (35)

To first order then, we find the values for the Wilson coefficients at a

distance scale of x ≈ m−1
w

C
1/2
12 (m−1

w ;µ) =
[ ln(m2

w/Λ2
QCD)

ln(µ2/Λ2
QCD)

] 4
β0

C
3/2
12 (m−1

w ;µ) =
[ ln(m2

w/Λ2
QCD)

ln(µ2/Λ2
QCD)

]− 2
β0
.

(36)

The superscripts on these operators refer to their isospin quantum

numbers. In turns out that O1/2 can mediate processes that change the

isospin by 1/2 but not by 3/2.
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Kaon Decays - QCD corrections to weak decays

Now that we finally have the QCD corrections to strange quark decays,

let’s quickly see how this applies to the K meson (the lightest hadron

with an s quark). The process K 0 → π+π− changes the isospin by 1/2.

The process K+ → π+π0 changes isospin by 3/2. Experimentally, the

former occurs at a much higher rate.

For ΛQCD ≈ 150 MeV, µ = mK , we find the operator O1/2 receives an

enhancement whereas the operator O3/2 receives a suppression. Thus the

weak decay of the s quark favors isospin 1/2 processes by a factor of ≈ 3.

Experimentally, the relative difference bewtween the processes is ≈ 20.

Getting the exact rates requires non-perturbative QCD, but the power of

the OPE is that we were able to make this qualitative prediction using

only perturbative methods.
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